Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 6): 1461-1469, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147170

RESUMO

Ronchi testing of a focused electromagnetic wave has in the last few years been used extensively at X-ray free-electron laser (FEL) facilities to qualitatively evaluate the wavefront of the beam. It is a quick and straightforward test, is easy to interpret on the fly, and can be used to align phase plates that correct the focus of aberrated beams. In general, a single Ronchigram is not sufficient to gain complete quantitative knowledge of the wavefront. However the compound refractive lenses that are commonly used at X-ray FELs exhibit a strong circular symmetry in their aberration, and this can be exploited. Here, a simple algorithm that uses a single recorded Ronchigram to recover the full wavefront of a nano-focused beam, assuming circular symmetry, is presented, and applied to experimental measurements at the Matter in Extreme Conditions instrument at the Linac Coherent Light Source.

2.
Phys Plasmas ; 24(5): 056702, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28652684

RESUMO

Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 µm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.

3.
Appl Opt ; 49(9): 1676-81, 2010 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-20300167

RESUMO

We present the design and performance of the Texas Petawatt Laser, which produces a 186 J 167 fs pulse based on the combination of optical parametric chirped pulse amplification (OPCPA) and mixed Nd:glass amplification. OPCPA provides the majority of the gain and is used to broaden and shape the seed spectrum, while amplification in Nd:glass accounts for >99% of the final pulse energy. Compression is achieved with highly efficient multilayer dielectric gratings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...